19 research outputs found

    Effect of polyethylene glycol-intercalated organoclay on vulcanization characteristics and reinforcement of natural rubber nanocomposites

    No full text
    Organically modified montmorillonite (OMMT) clay was intercalated with low-molecular weight polyethylene glycol (PEG) oligomer at melt stage. The intercalation behaviour of PEG into the OMMT clay galleries and its interaction with clay platelets were characterized with X-ray diffraction (XRD) and differential scanning calorimetric techniques. A natural rubber (NR)-organoclay nanocomposite (NROCN) was prepared by melt-compounding of NR with PEG-treated organoclay (P-OMMT) and other compounding chemicals using a laboratory-scale internal mixer. XRD analysis of the nanocomposites revealed the intercalation of NR molecules into the P-OMMT clay galleries and subsequent exfoliation during the melt-compounding process. Vulcanization characteristics of the NROCN, especially processing safety and optimum curing time, have been interpreted with reference to the organic modifier of the montmorillonite clay, PEG modification and the degree of exfoliation. Solid-state mechanical properties of P-OMMT clay-filled NROCN vulcanizates have shown a significant enhancement in stiffness and strength characteristics whilst without scarifying the elasticity of the nanocomposites. Results have been explained in terms of the degree of exfoliation, dispersibility of the organoclay and strain-induced crystallization of the natural rubber.The author(s) received no financial support for the research, authorship, and/or publication of this article

    Impact of culture towards disaster risk reduction

    Get PDF
    Number of natural disasters has risen sharply worldwide making the risk of disasters a global concern. These disasters have created significant losses and damages to humans, economy and society. Despite the losses and damages created by disasters, some individuals and communities do not attached much significance to natural disasters. Risk perception towards a disaster not only depends on the danger it could create but also the behaviour of the communities and individuals that is governed by their culture. Within this context, this study examines the relationship between culture and disaster risk reduction (DRR). A comprehensive literature review is used for the study to evaluate culture, its components and to analyse a series of case studies related to disaster risk. It was evident from the study that in some situations, culture has become a factor for the survival of the communities from disasters where as in some situations culture has acted as a barrier for effective DRR activities. The study suggests community based DRR activities as a mechanism to integrate with culture to effectively manage disaster risk

    Effect of polyethylene glycol-intercalated organoclay on vulcanization characteristics and reinforcement of natural rubber nanocomposites

    No full text
    Organically modified montmorillonite (OMMT) clay was intercalated with low-molecular weight polyethylene glycol (PEG) oligomer at melt stage. The intercalation behaviour of PEG into the OMMT clay galleries and its interaction with clay platelets were characterized with X-ray diffraction (XRD) and differential scanning calorimetric techniques. A natural rubber (NR)-organoclay nanocomposite (NROCN) was prepared by melt-compounding of NR with PEG-treated organoclay (P-OMMT) and other compounding chemicals using a laboratory-scale internal mixer. XRD analysis of the nanocomposites revealed the intercalation of NR molecules into the P-OMMT clay galleries and subsequent exfoliation during the melt-compounding process. Vulcanization characteristics of the NROCN, especially processing safety and optimum curing time, have been interpreted with reference to the organic modifier of the montmorillonite clay, PEG modification and the degree of exfoliation. Solid-state mechanical properties of P-OMMT clay-filled NROCN vulcanizates have shown a significant enhancement in stiffness and strength characteristics whilst without scarifying the elasticity of the nanocomposites. Results have been explained in terms of the degree of exfoliation, dispersibility of the organoclay and strain-induced crystallization of the natural rubber

    Natural rubber latex-clay nanocomposite: use of montmorillonite clay as an alternative for conventional CaCO3

    No full text
    Natural rubber (NR) latex-clay nanocomposite (NRLCN) synthesized with montmorillonite (MMT) clay aqueous dispersion was evaluated for reinforcement and barrier properties. The physio-mechanical properties of the NRLCN were compared with the conventional NR latex composites containing CaCO3. The NRLCN structure was characterized with X-ray diffraction and scanning electron microscope techniques. The X-ray diffraction data showed that, with a lower concentration of clay, a highly exfoliated clay structure was achieved whilst the clay aggregation gradually resulted in a higher concentration of clay. The crosslink density as computed based on the solvent absorption data of the latex nanocomposite films was increased with the increase of clay concentration. As a result of nanoscale dispersion of the montmorillonite clay and higher crosslink density of the latex nanocomposite films, the resistance to permeation of small molecules through the NRLCN was significantly enhanced in comparison to conventional NR latex-CaCO3 composites. Solid state mechanical properties of NRLCNs showed a significant reinforcement effect of dispersed clay platelets but without significantly reducing the elastic properties. The higher mechanical properties and improved barrier resistance indicated that NR latex nanocomposites containing montmorillonite clay is a potential replacement for conventional NR latex composites containing CaCO3

    Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite

    No full text
    The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society

    Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite

    No full text
    The fabrication of flexible multilayer graphene oxide (GO) CARBONNANOTUBe membrane and carbon nanotubes (CNTs) using a rare form of high-purity cswcmt^mwcnt, natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer’s method. By facilitating functionalized graphene sheets in graphite oxide to selfassemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C Is core level spectra show that oxygen functionalities (—C—OH, —C=0,—C— O-C—) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials

    Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties

    Get PDF
    Exfoliated graphite nanoplatelets (xGnP)-filled impact-modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt \% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride (PP-g-MA). The nanoparticles used were xGnP with three different sizes: xGnP(5) has an average thickness of 10 nm, and an average platelet diameter of 5 mu m, whereas xGnP(15) and xGnP(25) have the same thickness but average diameters are 15 and 25 mu m, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better flexural and tensile properties for both neat and compatibilized composites. For composites containing a coupling agent, tensile and flexural modulus and strength increased with the addition of xGnP. In the case of neat composites, both tensile and flexural modulus and strength decreased at higher filler loading levels. Increasing xGnP loading resulted in reduction of elongation at break for both neat and composites containing coupling agent. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using scanning electron microscopy and transmission electron microscopy
    corecore